Permeation and Block of the Skeletal Muscle Chloride Channel, ClC-1, by Foreign Anions

نویسندگان

  • G.Y. Rychkov
  • M. Pusch
  • M.L. Roberts
  • T.J. Jentsch
  • A.H. Bretag
چکیده

A distinctive feature of the voltage-dependent chloride channels ClC-0 (the Torpedo electroplaque chloride channel) and ClC-1 (the major skeletal muscle chloride channel) is that chloride acts as a ligand to its own channel, regulating channel opening and so controlling the permeation of its own species. We have now studied the permeation of a number of foreign anions through ClC-1 using voltage-clamp techniques on Xenopus oocytes and Sf9 cells expressing human (hClC-1) or rat (rClC-1) isoforms, respectively. From their effect on channel gating, the anions presented in this paper can be divided into three groups: impermeant or poorly permeant anions that can not replace Cl- as a channel opener and do not block the channel appreciably (glutamate, gluconate, HCO3-, BrO3-); impermeant anions that can open the channel and show significant block (methanesulfonate, cyclamate); and permeant anions that replace Cl- at the regulatory binding site but impair Cl- passage through the channel pore (Br-, NO3-, ClO3-, I-, ClO4-, SCN-). The permeability sequence for rClC-1, SCN- approximately ClO4- > Cl- > Br- > NO3- approximately ClO3- > I- >> BrO3- > HCO3- >> methanesulfonate approximately cyclamate approximately glutamate, was different from the sequence determined for blocking potency and ability to shift the Popen curve, SCN- approximately ClO4- > I- > NO3- approximately ClO3- approximately methanesulfonate > Br- > cyclamate > BrO3- > HCO3- > glutamate, implying that the regulatory binding site that opens the channel is different from the selectivity center and situated closer to the external side. Channel block by foreign anions is voltage dependent and can be entirely accounted for by reduction in single channel conductance. Minimum pore diameter was estimated to be approximately 4.5 A. Anomalous mole-fraction effects found for permeability ratios and conductance in mixtures of Cl- and SCN- or ClO4- suggest a multi-ion pore. Hydrophobic interactions with the wall of the channel pore may explain discrepancies between the measured permeabilities of some anions and their size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of Ion Permeation in Skeletal Muscle Chloride Channels

Voltage-gated Cl- channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl- channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I- and related anions. Extracellular and intracellular I- ex...

متن کامل

Heteromultimeric CLC chloride channels with novel properties.

The skeletal muscle chloride channel CLC-1 and the ubiquitous volume-activated chloride channel CLC-2 belong to a large gene family whose members often show overlapping expression patterns. CLC-1 and CLC-2 are coexpressed in skeletal and smooth muscle and in the heart. By coexpressing CLC-1 and CLC-2 in Xenopus oocytes, we now show the formation of novel CLC-1/CLC-2 heterooligomers that yield t...

متن کامل

ClC-1 chloride channel: Matching its properties to a role in skeletal muscle.

1. ClC-1 is a Cl- channel in mammalian skeletal muscle that plays an important role in membrane repolarization following muscular contraction. Reduction of ClC-1 conductance results in myotonia, a state characterized by muscle hyperexcitability. 2. As is the case for other members of the ClC family, ClC-1 exists as a dimer that forms a double-barrelled channel. Each barrel, or pore, of ClC-1 is...

متن کامل

ClC-1 chloride channels: state-of-the-art research and future challenges

The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl(-) homeostasis is crucial for...

متن کامل

Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations.

The muscle Cl- channel, ClC-1, is a member of the ClC family of voltage-gated Cl- channels. Mutations in CLCN1, the gene encoding this channel, cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen). The functional characterization of these naturally occurring mutations not only allowed a better understanding of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1998